Friday, October 17, 2014

The Climate System as a Foreign Sports Car

by Ben Brown-Steiner

Imagine the earth’s climate system as a foreign sports car owned by a playful friend. Your friend is happy to let you look and listen to the car and will on occasion give you a ride in it. But he’s unwilling to let you look under the hood or study the user’s manual. If you want to try and understand how the car works, and maybe even build your own, you are going to need to be clever and use all the tools at your disposal to figure out how this car works.

This is very much like how earth scientists try to understand the real world. The real world, even more so than the foreign sports car, is very complex and intricate. We are unable to look under reality’s hood or read reality’s users manual. What we are able to do is to make careful observations, come up with theories as to how the real world works, test our theories with experiments and create models to test and explore our understanding.

When you start to build your own car, the first thing you are going to gather are the major parts: a frame, an engine, wheels, rods, doors, spark plugs, fuel and so on. For the Earth’s climate, instead of parts we have variables: ocean temperature, relative humidity, solar radiation, CO2 concentrations, and many others.

However, you need a plan to put your parts together.  You need an understanding of some of the interactions between the parts you have and the function of your car. You know that fuel needs to be injected into the engine in a particular way. You know that the wheels need to be connected both to the engine and to the brakes if you ever want to actually drive your car. Earth scientists know that sunlight heats the surface of the earth, which in turn heats the atmosphere. They know that warm air holds more water than cold air. Any successful climate model needs to have these elementary parts.

To put these parts together you need a design framework. For our car, this is a engineering schematic of the parts and their functionality. We know when brakes are applied, the velocity of the car decreases. For earth scientists, this is typically in the form of code and equations. We know that precipitation falls as rain if the temperature is above freezing and falls as snow if the temperature is below freezing.

During our first attempt, there are many things we don’t know. We know that there is an interaction between the stick shift and the engine. We know that there is some interaction between the oceans and the atmosphere. But we don’t know the exact details. To begin to understand these unknowns we must make careful observations of the thing we’re trying to model and come up with tentative hypothesis and theories. We can listen to the revving of the engine or make observations of ocean and atmospheric temperatures.

You then put together a scheme that you think might work like the real thing. You design some system (or write some code) that combines what you know with the things you have hypothesized. Because you know that you are uncertain about particular interactions, you make those parts easy to observe and easy to modify or swap out with another part. This is what often is described as a parameterization or a scheme in a climate model. It’s a variable or equation that you know you’ll have to tweak or change out later on.

For instance, after you run the car you notice that your car moves backwards when you think it should be moving forwards or your climate snows when it should be raining. You look carefully at your variables and design and equations and parameters and try to find the error. You may have had your wires mismatched our you may have had inaccurately represented the relationship between moisture and temperature.

The next step takes this newfound understanding and incorporates it into your next model. You fix your mistakes and you tune your parameterizations. Then you test it again and repeat the whole process over and over until your understanding grows. Fundamentally, this is is the way that science functions. It is an interactive process. It’s never ending. You test and tune and observe and reformulate and repeat. Eventually, if you are clever and lucky, your model gets better and you gain a deeper understanding.

Unfortunately, since we are not able to look at the actual foreign sports car (because our friend is too secretive) and since we will never see the inner workings of the real world, we are never going to have a perfect model. Models by definition are simplifications of the real thing. You strive to have a really good simplification that provides insight and understanding. And you keep trying. This is science.

No comments: